Required Problems

1. Consider the sequence $\{x_n\}_{n=1}^{\infty}$ such that

$$x_n = \frac{n+1}{n}$$

To what does this sequence converge? Prove that this sequence converges to that limit.

- 2. Let S and T be convex sets. Prove that the intersection of S and T is also a convex set.
- 3. The set $S^{n-1} = \{ \mathbf{x} \mid \sum_{i=1}^{n} x_i = 1 \land x_i \ge 0 \forall i = 1, \dots, n \}$ is the (n-1)-dimensional unit simplex.
 - (a) Describe in words the set S^{n-1} for n=3
 - (b) Prove that S^{n-1} is a convex set.
 - (c) Prove that S^{n-1} is a compact set.
- 4. Let D be a convex subset of \mathbb{R}^n and $f: D \to \mathbb{R}$. For the following two statements, if it is true provide a proof. If it is false, provide a counterexample.
 - (a) f is strictly concave \implies f is strictly quasiconcave
 - (b) f is strictly quasiconcave $\implies f$ is strictly concave

Additional Practice Problems (I will provide solutions for these but not feedback)

- 5. Give a relation r from $A = \{5, 6, 7\}$ to $B = \{3, 4, 5\}$ such that
 - (a) r is not a function
 - (b) r is a function from A to B with the range $\mathcal{R}(r) = B$
 - (c) r is a function from A to B with the range $\mathcal{R}(r) \neq B$
- 6. Identify the domain and range of each of the following mappings:
 - (a) $\left\{ (x,y) \in \mathbb{R}^2 \middle| y = \frac{1}{x+1} \right\}$ (b) $\left\{ (x,y) \in \mathbb{N} \times \mathbb{N} \middle| y = x+5 \right\}$ (c) $\left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} \middle| y = \frac{x^2 - 4}{x-2} \right\}$
- 7. For each of the following sequences, list the first three terms:
 - (a) $a_n = \frac{n+1}{2n+3}$ (b) $b_n = \frac{1}{n!}$ (c) $c_n = 1 - 2^{-n}$
- 8. Prove that if $x_n \to L$ and $y_n \to M$, then $x_n + y_n \to L + M$.

- 9. Prove that if $a_n \to a$ and $a_n \leq b$ for all n, then $a \leq b$.
- 10. Consider the following intervals in \mathbb{R} . For each, determine if it is closed. If so, give a proof:
 - (a) $(-\infty, b]$
 - (b) (a, b]
 - (c) $[a,\infty)$
 - (d) [a, b)
- 11. Consider the following sets. If the set is bounded, provide an M and a \mathbf{x} such that $B_M(\mathbf{x})$ contains the set.
 - (a) $A = \{x | x \in \mathbb{R} \land x^2 \le 10\}$
 - (b) $B = \left\{ x | x \in \mathbb{R} \land x + \frac{1}{x} < 5 \right\}$
 - (c) $C = \{(x, y) | (x, y) \in \mathbb{R}^2_+ \land xy < 1\}$
 - (d) $D = \{(x, y) | (x, y) \in \mathbb{R} \land |x| + |y| \le 10\}$
- 12. Prove that the following functions are continuous using epsilon-delta proofs.
 - (a) f(x) = x + 3(b) $g(x) = x^2$ (c) h(x) = |x|